Quiz #5, October 11th

Math 251 Fall 2017 Solutions Name:

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.

Exercise 1. (6 pts.) Differentiate the following functions.

(a)
$$f(t) = 5^{2t^2} = (5)^{(2t^2)}$$

 $f'(t) = (\ln 5) 5^{2t^2} \cdot \frac{d}{dt} [2t^2]$
 $= (\ln 5) 5^{2t^2} \cdot 4t$
 $= (4 \ln 5) t \cdot 5^{2t^2}$
(b) $f(\theta) = \theta \sin \theta \cos \theta$
 $f'(\phi) = [\cdot(\sin \theta \cos \theta) + \theta \cdot \frac{d}{d\theta}(\sin \theta$

Exercise 2. (6 pts.) find the derivatives of the following functions.

(a)
$$g(x) = \sec^{3}(5x) = [\sec(5x)]^{3}$$

 $g'(x) = 3[\sec(5x)]^{2}(\sec(5x) + \tan(5x)) \cdot 5)$
 $\frac{d}{dx}(\sec(5x))$
 $= [15 \sec^{3}(5x) + \tan(5x)]$.
(b) $f(x) = e^{x \csc x}$
 $f'(x) = e^{x \csc x} \cdot \frac{d}{dx}(x \csc x)$
 $= e^{x \csc x} \cdot [1 \cdot \csc x + x \cdot (-\cot x \csc x)]$
 $= \csc x(1 - x \cot x) e^{x \csc x}$

Exercise 3. (4 pts.) For what values of x does $y = \sqrt{x^2 + x}$ have a horizontal tangent?

$$y = (x^{2} + x)^{2}$$

$$y' = \frac{1}{2} (x^{2} + x)^{2} (2x+1)$$

$$= \frac{2x+1}{2\sqrt{x^{2}+x}} = 0$$
We want x
where y' = 0
(or slope is horizontal.)

v-2

UAF Calculus 1

Ş

_ / 25

Exercise 5. (5 pts.) Find the 50th derivative of y = cos(4x).

(a) Find the first four derivatives of $y = \cos(4x)$.

 $y = -4 \sin(4x)$ $y'' = -4^2 \cos(4x)$ $y''' = 4^3 \sin(4x)$ $M^{(4)} = 4^4 \cos(4x)$

(b) Using your answer to (a), find the 50th derivative of $y = \cos(4x)$.

v-2