\qquad

Name: Solutions
There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (6 pts.) Differentiate the following functions.

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& f(t)=5^{2 t^{2}}=(5)^{\left(2 t^{2}\right)} \\
& f^{\prime}(t)=(\ln 5) 5^{2 t^{2}} \cdot \frac{d}{d t}\left[2 t^{2}\right] \\
&=(\ln 5) 5^{2 t^{2}} \cdot 4 t \\
&=(4 \ln 5) t \cdot 5^{2 t^{2}}
\end{aligned}
\end{aligned}
$$

$$
\text { (b) } f(\theta)=\theta \sin \theta \cos \theta
$$

$$
\begin{aligned}
f^{\prime}(\theta) & =1 \cdot(\sin \theta \cos \theta)+\theta \cdot \frac{d}{d \theta}(\sin \theta \cos \theta) \\
& =\sin \theta \cos \theta+\theta \cdot[\sin \theta \cdot(-\sin \theta)+\cos \theta \cdot \cos \theta] \\
& =\sin \theta \cos \theta+\theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{aligned}
$$

Exercise 2. (6 pts.) find the derivatives of the following functions.

$$
\begin{aligned}
& \text { (a) } g(x)=\sec ^{3}(5 x)=[\sec (5 x)]^{3} \\
& g^{\prime}(x)\left.=3[\sec (5 x)]^{2}\right]_{\frac{d}{d x}(\sec (3 x x)}^{(\sec (5 x) \tan (5 x)) \cdot 5} \\
&=15 \sec ^{3}(5 x) \tan (5 x) .
\end{aligned}
$$

(b) $f(x)=e^{x \csc x}$

$$
\begin{aligned}
f^{\prime}(x) & =e^{x \csc x} \cdot \frac{d}{d x}(x \csc x) \\
& =e^{x \csc x} \cdot[1 \cdot \csc x+x \cdot(-\cot x \csc x)] \\
& =\csc x(1-x \cot x) e^{x \csc x}
\end{aligned}
$$

Exercise 3. (4 pts.) For what values of x does $y=\sqrt{x^{2}+x}$ have a horizontal tangent?

$$
\begin{aligned}
y & =\left(x^{2}+x\right)^{1 / 2} \\
y^{\prime} & =\frac{1}{2}\left(x^{2}+x\right)^{-1 / 2}(2 x+1) \\
& =\frac{2 x+1}{2 \sqrt{x^{2}+x}}=0
\end{aligned}
$$

Thus, we require:

$$
2 x+1=0 \text { or } x=-1 / 2
$$

But, $x=-1 / 2$ is not in the domain of the derivative y^{\prime}.
ans: y has no horizontal tangents

UAF Calculus 1
\qquad

- Exercise 4. (4) pts.) Find an equation of the tangent line to the curve $y=\frac{10}{(\tan x+2)^{2}}$ at the point $(0,5)$

$$
\begin{array}{rlr}
y=10(\tan x+2)^{-2} & \begin{array}{l}
\text { tangent line: } \\
\\
y-5=\frac{-5}{2}(x-0)
\end{array} \\
y^{\prime}=-20(\tan x+2)^{-3}\left(\sec ^{2} x\right) & y=\frac{-5}{2} x+5 \\
& =\frac{-20 \sec ^{2} x}{(\tan x+2)^{3}} & \\
y^{\prime}(0)=\frac{-20 \sec ^{2} 0}{(\tan 0+2)^{3}}=\frac{-20}{8}=\frac{-5}{2}=m
\end{array}
$$

correction: The point should have been ($0,5 / 2$). So the line Should have been

$$
y=\frac{-5}{2} x+\frac{5}{2} .
$$

Exercise 5. (5 pts.) Find the 50th derivative of $y=\cos (4 x)$.
(a) Find the first four derivatives of $y=\cos (4 x)$.

$$
\begin{gathered}
y^{\prime}=-4 \sin (4 x) \\
y^{\prime \prime}=-4^{2} \cos (4 x) \\
y^{\prime \prime \prime}=4^{3} \sin (4 x) \\
y^{(4)}=4^{4} \cos (4 x)
\end{gathered}
$$

(b) Using your answer to (a), find the 50th derivative of $y=\cos (4 x)$.
$12 \quad$ Every 4 derivatives, we get back to $\cos (4 x)$. So

$$
\begin{aligned}
& \frac{4}{10} \\
& \frac{8}{2 K 2}
\end{aligned}
$$ to $\cos (4 x)$. So

$$
\begin{aligned}
& \text { 2 } \begin{array}{c}
\text { derivatives } \\
\text { past } 4.12 \\
" 48
\end{array} ~
\end{aligned}
$$

$$
=48 \text {. }
$$

